SERIES, < 50 KRad/Si - TID, Commercial Space

Crystal Oscillator | 3.3V | CMOS | 3.2x2.5 mm Ceramic SMD | SmallSat-CubeSat

3.2x2.5 mm Ceramic SMD Package

Features

Electrical

SPECIFICATIONS

- Hi-Rel Design and Manufacture
- Customer Support & Service
- Mission Life Duration Choice
- Proven High Shock Crystal Support
- ECCN EAR 99
- High-Shock & Vibration Configuration ■ Smallest Hi-Rel Package
- Designed for > 20,000 Hours Life at +125°C
- Mission Success | Life Options 6 Months to 5 Years

OI LOII I	OAIIOI										
Mission Life / Screening Code		Frequency	Supply	Rise/Fall	Symmetry	Aging	Frequency Stability Vs. Temperature				
6 Months to 1 year	B 1 Year to 2 years	C 3 Years to 5 years	Range (MHz)	Current @ 3.3V ±10% (mA)	Time (tr/tf) max (nsec)	min / max (%)	per year max <u>1</u> / (ppm)	-55°C to +125°C (ppm)	-55°C to +125°C (ppm)	-40°C to +105°C (ppm)	-40°C to +85°C (ppm)
CODE	CODE	CODE						CODE A	CODE	CODE	CODE
01	02	03	0.5 to 0.9	1.1	3	45/55	±10	±100	±75	±60	±50
04	05	06	1 to 7.9	1.3	3	45/55	±10	±100	±75	±60	±50
07	08	09	8 to 15.9	3	3	45/55	±10	±100	±75	±60	±50
11	12	13	16 to 49.9	6	2	40/60	±10	±100	±75	±60	±50
14	15	16	50 to 74.9	8	2	40/60	±10	±100	±75	±60	±50
17	18	19	75 to 100	16	2	40/60	±10	±100	±75	±60	±50

See reverse side for screening details

CMOS Output, 15 pF Load Output Voltage - Logic "0" is Vcc x 0.1 Vdc Output Voltage - Logic "1" is Vcc is 0.9 Vdc

Start-up Time: 10 msec max

1/ Frequency Aging Limit

±1.5 ppm Max change over 30 days Projected max change for 1 year after 30 days

±10 ppm

Please Contact Us for Specification Options that are Outside of or beyond those Shown in the Table Above

Standard PAD CONFIGURATION
* Enable, Logic 1 Disable, Logic 0
Terminate any unused pads,

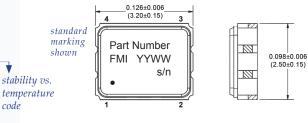
Pin Number	Function
1	Ourput Enable (Tri-state)*
2	Ground (case)
3	Output
4	Supply V (Vcc)

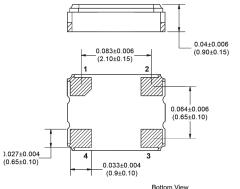
How To ORDER

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2015

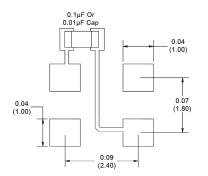
electrical specifications within frequency of data sheet) range / tristate option code

11


example:


C33A11D-24M00000

US Manufacture


- **Design & Configuration Control**
- Radiation Test Data Available upon Request

Mechanical SPECIFICATIONS

Recomended Land Pattern

Huntington Beach, CA 92649

Designed Specifically for Lower-cost Space Missions

Lower than 3.3 Volt versions of our 3.2x2.5 mm SMD Crystal Oscillator for Commercial Satellite are available, please inquire!

<u> </u>	ng- A, B & C OPTIONS				
Screening	Method Options:	Α	В		
Non-Destruct Bond Pull	MIL-STD-883, Method 2023	•	•	Ш	
Internal Visual	MIL-STD-883, Method 2017	•	•		
Stabilization (Vacuum) Bake	MIL-STD-883, Method 1008, Condition C, 150°C, 24 hours min	•	•		
Temperature Cycling	MIL-STD-883, Method 1010, Condition B, 10 Cycles	•	•		
Constant Acceleration	MIL-STD-883, Method 2001, Condition A (Y1 only, 5000 g's)		•		
PIND Test	MIL-STD-883, Method 2020, Condition B, 5 passes max				
Seal: Fine Leak	MIL-STD-883, Method 1014, Condition A1				
	MIL-STD-202, Method 112, Condition C, 111A		•		
Seal: Gross Leak	MIL-STD-202, Method 112, Condition D	•	•		
Electrical Test	Functional Test Only at +23°C	•	•		
Marking & Serialization	MIL-STD-1285	•	•		
Electrical Test	Nominal Vcc & Extremes and Nominal Temp and Extremes		•		
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min		•		
Burn-in (no-load)	+125°C, Nominal Supply Voltage and Burn-in load, 48 hours min	•			
Interim Electrical	Functional Test Only				
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min				
b) Frequency stability is tested	ncy, output waveform, are tested at +23°C ±2°C over the specified temperature range; at both minimum of 5 temperature increments is by lot # and then serial #	•	•		
Radiography	MIL-STD-883, Method 2012				
Frequency Aging	MIL-PRF-55310, +70°C Condition				
Frequency/Temperature Stability	MIL-PRF-55310, Over temperature extremes, 20 points equally spaced				
External Visual & Mechanical	MIL-STD-883, Method 2009	•			

		•		
Environmental	COMPLIANCE			
Environmental	Specification	Method	Condition	
Vibration – Sine	MIL-STD-202	Method 204	Condition D	20g, 10 to 2 KHz
Vibration – Random	MIL-STD-202	Method 214	Condition 1	30g rms, 10 to 2 KHz Ra
Shock	MIL-STD-202	Method 213	Condition I	100g, 6 ms, F:1500, 0.5
Seal Test	MIL-STD-883	Method 1014	Condition A1	Fine Leak
Seal Test	MIL-STD-883	Method 1014	Condition C1	Gross Leak
Temperature Cycling	MIL-STD-883	Method 1010	Condition B	10 Cycles Minimum
Constant Acceleration	MIL-STD-883	Method 2001	Condition A	5000g, Y1 Axis
Thermal Shock	MIL-STD-202	Method 107	Condition B	

Specification

MIL-STD-202

MIL-STD-202

MIL-STD-202

MIL-STD-883

MIL-STD-202

MIL-STD-883

MIL-STD-202

Method

Method 105

Method 210

Method 106

Method 1009

Method 211

Method 2003

Method 215

SmallSat | CubeSat

note: other options, screening levels and custom test plans available.

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2015 Pb-free RoHS Certified

Military Reference Specifications

MIL-PRF-55310 Oscillators, Crystal Controlled, General Specification For
MIL-PRF-38534 Hybrid Microcircuits, General Specification For
MIL-STD-202 Test Method Standard, Electronic and Electrical Components
Test Methods and Procedures for Microelectronics
MIL-STD-1686 Electrostatic Discharge Control Program for Protection of
Electrical and Electronic Parts, Assemblies and Equipment

Materials

Environmental

Ambient Pressure

Moisture Resistance

Terminal Strength

Resistance to Solvents

Solderability

Resistance to Soldering Heat

Salt Atmosphere (corrosion)

- Package Materials:
 Ceramic, Alumina 90% min
- 2. External Lead Plating Material: Gold plated Kovar, 0.15 μ m (60 μ inch) min, over 2.0 μ m (80 μ inch) min Nickel

Products for Space Applications

Condition

Condition C

Condition C

with 7B Sub-cycle

Test Condition D

Condition A (24 hrs)

Contact us for assistance with your specification. We will provide you with the technical support and the required documentation.

Issue 11_12192023

Ph. 714 373 8100 Fx. 714 373 8700